一个AI算法就能代替手机图像处理器
机拍出来的质感却不一样,一方面是镜头模组不同,另一方面是对图像处理器(ISP)的软件调教也不同。 最近,苏黎世联邦理工学院(ETHZ)提出一个新的算法PyNet,只需单个端到端深度学习模型,就能替代手机的ISP。 它调教出的相机算法可以从一个手机移植到另一个手机上,而不必使用手机的ISP。即使两款手机芯片来自两家厂商,也完全没问题。
用华为P20和佳能单反相机5D Mark IV调教的算法,移植到黑莓手机KeyOne上,照片质量与原始ISP输出相比,有了很大的改善。 用的是麒麟970芯片+1200万像素索尼IMX 380摄像头,黑莓KeyOne使用的是骁龙625+1200万像素索尼IMX 378摄像头。 目前,PyNET的源代码、数据集、预训练模型都已经在GitHub上发布了。 PyNET原理我们按下快门后,手机在不到一秒时间里就输出了一幅图片,背后过程却相当复杂。 手机拍照时,首先输出的是原始不带任何修饰的感光信息文件RAW。 RAW经过手机SoC中专门用于运算图像的ISP经过一系列处理,将原本暗淡的原始图像变成艳丽的结果。 这其中的过程包括:去除噪点、修正白平衡、调整曝光量、校正色彩对比度、超分辨率等等。 现在,越来越多的手机开始用上NPU等AI核心,AI运算能力越来越强,未来是否可以用NPU来代替ISP做图像运算呢?这就是ETHZ研究人员的思路。 研究人员首先采集2万张华为P20拍摄的RAW原始图片,和同样场景下Canon单反5D Mark IV拍摄的照片,以此作为数据集进行训练。
但是训练过程中并没有使用原尺寸的图片,而是448×448的窗口从图片上选取一部分,最后 产生了48043个RAW-RGB图像对。 (编辑:新余站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |