边缘计算和智能安防
随着公共云采用的增长,公司和组织将平台视为大数据的集中位置。但是,最近有人反对这种趋势。相反,我们现在看到的是在边缘而不是在云中处理的数据。偏好更改的一个主要原因是:延时。 延时是尝试进行实时模式识别时的重要考虑因素。如果摄像机必须返回到数百英里之外的中央数据中心,则摄像机很难处理数据(24/7全天候记录4K监视视频)。此数据分析需要快速进行,以便及时并适用于动态情况,例如公共安全。通过在边缘存储相关数据,AI推理可以更快地进行。这样做可以带来更安全的社区、更有效的运营和更智能的基础架构。 超高清和存储 支持AI的应用和功能(例如模式识别)取决于4K等高清分辨率,也称为超高清(UHD)。这些详细的数据对存储有重大影响,需要写入的容量和速度以及网络。与高清相比,4K视频具有更高的存储要求,我们甚至可以看到8K。 众所周知,4K视频的像素数是高清视频的四倍。此外,兼容4K的视频每通道支持8位、10位和12位,每个像素转换为24位,30位或36位色深。HD也有类似的模式-每个像素使用24位或更少的颜色使用10或12位颜色深度。总的来说,与1080像素视频相比,由4K生成的位最多增加了5.7倍。较大的视频文件对视频生产和监视的数据基础结构提出了新的要求。这意味着在研究智能安全性时,对数据基础架构进行投资已成为关键考虑因素。 永远在线 无论是设计具有受限连接性的解决方案,还是设计超快5G功能,大多数智能安全解决方案都需要24/7全天候运行,而不管其环境如何。但是,有时基础硬件和软件系统也会发生故障。在这种情况下,重要的是建立故障转移过程,以确保故障后继续运行或恢复数据,包括从流量控制到传感器再到摄像机馈送等等的所有内容。
考虑一个医院的示例,该医院有数十个甚至一百多个摄像机通过IP连接到集中式记录器。如果以太网断开,则无法捕获视频。此类事件可能会严重威胁医院患者和医护人员的安全。因此,摄像机中使用microSD卡进行连续记录。然后,由AI驱动的软件工具可以用卡上捕获的内容“修补”丢失的数据流,以确保视频流可以按时间顺序进行观看而没有内容空白。 (编辑:新余站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |