Flink为什么比Spark快?大数据流处理的框架差异
Spark和Flink计算引擎,在处理大规模数据上,数据模型和处理模型有很大的差别。 Spark的数据模型是弹性分布式数据集RDD(Resilient Distributed Datasets)。RDD可以实现为分布式共享内存或者完全虚拟化(即有的中间结果RDD当下游处理完全在本地时可以直接优化省略掉)。这样可以省掉很多不必要的I/O,是早期Spark性能优势的主要原因。 Spark用RDD上的变换(算子)来描述数据处理。每个算子(如map,filter,join)生成一个新的RDD。所有的算子组成一个有向无环图(DAG)。这就是Spark进行数据处理的核心机制。 而Flink的基本数据模型,则是数据流,及事件(Event)的序列。数据流作为数据的基本模型,这个流可以是无边界的无限流,即一般意义上的流处理。也可以是有边界的有限流,这样就是批处理。 Flink用数据流上的变换(算子)来描述数据处理。每个算子生成一个新的数据流。在算子,DAG,和上下游算子链接(chaining)这些方面,和Spark的基本思路是一样的。 但是在在DAG的执行上,Spark和Flink有明显的不同。 在Flink的流执行模式中,一个事件在一个节点处理完后的输出就可以发到下一个节点立即处理。这样执行引擎并不会引入额外的延迟。而Spark的micro batch和一般的batch执行一样,处理完上游的stage得到输出之后才开始下游的stage。
这也就是Flink为什么比Spark快的原因之一。并且Flink在数据流计算执行时,还可以把多个事件一起进行传输和计算,进一步实现数据计算的低延迟。所以Flink之所以快,其实也可以理解为比Spark的延迟性更低。 (编辑:新余站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |